Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Here, we use multi-method thermobarometric analyses (thermodynamic modelling, quartz in garnet barometry, Raman spectroscopy of carbonaceous material (RSCM) thermometry, and titanium in biotite thermometry) from samples throughout two transects in the Northwestern Tethyan Himalaya (TH) to constrain the pressure-temperature conditions of the basal TH. Peak metamorphic conditions from the basal TH indicate anomalously high pressures relative to the paleogeothermal gradients recorded along the two transects, suggesting non-lithostatic pressure conditions at the base of the Tethyan Himalaya. The TH fold-thrust belt comprises a deformed Neoproterozoic-Cretaceous section of sedimentary rocks that record the early stages of deformation of the Himalayan orogen. In the northwestern Himalaya, rocks at the base of the TH are metamorphosed and are useful for reconstructing the thermal evolution of the Himalaya during initial stages of crustal thickening. RSCM thermometry on samples along the Pin Valley and Sutlej Valley transects of the TH suggest a continuous ~1500 °C/GPa thermobarometric gradient through the entire TH section. These samples are from a continuous ~10-12 km-thick TH section in which the stratigraphically highest units are undeformed, fossil-bearing sedimentary rocks. Assuming lithostatic pressure, the basal TH is expected to record peak pressure-temperature (P-T) conditions of ~0.4-0.5 GPa and ~600 °C. However, quartz-in-garnet (QuiG) barometry and titanium-in-biotite thermometry of samples from the basal TH indicate peak P-T conditions of 0.94 ± 0.25 GPa and ~600°C, suggesting a paleo-geothermal gradient of 870-500 °C/GPa. These data constitute unexpectedly high peak pressure conditions along the basal TH. Possible explanations for these anomalously high basal TH pressures include pre-Himalayan metamorphic assemblages preserved in the TH resulting in erroneous Himalayan peak P-T estimates, or regional non-lithostatic pressure along the basal TH during Himalayan orogenesis. Thermobarometric work on samples from different stratigraphic levels of the basal TH in the Sutlej Valley is in progress to determine paleo-geothermal gradient continuity both across- and along-strike of the orogen.more » « less
-
Abstract. Investigating North Pacific climate variability during warmintervals prior to the Common Era can improve our understanding of thebehavior of ocean–atmosphere teleconnections between low latitudes and theArctic under future warming scenarios. However, most of the existing icecore records from the Alaskan and Yukon region only allow access to climateinformation covering the last few centuries. Here we present asurface-to-bedrock age scale for a 210 m long ice core recovered in 2013from the summit plateau of Begguya (Mt. Hunter; Denali National Park,Central Alaska). Combining dating by annual layer counting with absolutedates from micro-radiocarbon dating, a continuous chronology for the entireice core archive was established using an ice flow model. Calibrated14C ages from the deepest section (209.1 m, 7.7 to 9.0 ka cal BP)indicate that basal ice on Begguya is at least of early Holocene origin. Aseries of samples from a shallower depth interval (199.8 to 206.6 m) weredated with near-uniform 14C ages (3 to 5 ka cal BP). Our resultssuggest this may be related to an increase in annual net snow accumulationrates over this period following the Northern Hemisphere Holocene ClimateOptimum (around 8 to 5 kyr BP). With absolute dates constraining thetimescale for the last >8 kyr BP, this paleo-archive will allowfuture investigations of Holocene climate and the regional evolution ofspatial and temporal changes in atmospheric circulation and hydroclimate inthe North Pacific.more » « less
-
The Denali Ice Cores were collected from the summit of Begguya (Mt. Hunter), Denali National Park, Alaska in the summer of 2013. Sampling permits were granted by Denali National Park for the drilling and removal of the ice cores. Here, we use the Cameca SX100 at the University of Maine to examine tephra particles recovered from the ice cores.more » « less
-
In 2013, two parallel ice cores (commonly referred to as the Denali Ice Cores) were drilled to bedrock on the summit plateau of Begguya, Alaska (62.93 N 151.083 W, 3912 m asl; also known as Mount Hunter). A robust chronology has been developed using a combination of techniques including annual layer counting, sulfate peaks (volcanics), radiocarbon dating and the 1963 atmospheric nuclear weapons testing horizon. Here, we employed tephrochronology practices to isolate and document the presence of the Lena Ash Layer and White River Ash east (WRAe) volcanic eruptions within the ice. We separated tephra from the meltwater and analyzed them using SEM-EDS and EPMA methodologies. The data are not immediately conclusive, and work is still ongoing to understand the findings.more » « less
-
The Denali Ice Cores were collected from the summit of Begguya (Mt. Hunter), Denali National Park, Alaska in the summer of 2013. Sampling permits were granted by Denali National Park for the drilling and removal of the ice cores. Here, we use the Tescan II at the University of Maine to examine tephra particles recovered from the ice cores.more » « less
An official website of the United States government
